X
تبلیغات
ریاضیات دوره ی راهنمایی - دایره
وبلاگی برای علاقمندان به ریاضی
 دایره

دایره: (circle)

مجموعه نقاطی از صحفه که فاصله ی آن از یک نقطه به نام مرکز برابر باشند ، دایره نامیده می شود.

دایره ی c به مرکز o و شعاع R را با نماد نشان می دهیم .

وتر دایره :(circle chord) پاره خطی که دو نقطه از محیط دایره را به هم وصل می کند . هر دایره بیشمار وتر دارد . مانند وتر های AB و CD در دایره ی C .

قطر دایره:(circle axis) بزرگترین وتر در هر دایره را قطر می نامند . قطر وتر ی از دایره است که از مرکز می گذرد مانند قطر MN در دایره ی C.

کمان دایره :(circle arc) قسمتی از محیط دایره را می گویند که به دو نقطه روی محیط دایره محدود شده باشد. اگر دو نقطه ی A و B را روی دایره C در نظر بگیریم دو کمان پدید می آید ، کمان کوچکتر را به صورت و کمان بزرگتر را به صورت می خوانیم .

نقطه و دایره : نقطه و دایره نسبت به هم 3 وضعیت دارند :1 نقطه داخل دایره است. 2 نقطه روی دایره است. 3 نقطه خارج دایره است .

وضع یک خط و یک دایره نسبت به هم:

خط و دایره نسبت به هم سه حالت دارند:

1. خط خارج دایره است که در این صورت فاصله ی خط تا مرکز دایره از شعاع بزرگتر است. d>r

2.خط بر دایره مماس است.که در این صورت فاصله ی خط تا مرکز دایره با شعاع مساوی است . یعنی d = r

3.خط دایره را در دو نقطه قطع می کند که در این صورت فاصله ی خط تا مرکز دایره از شعاع کو چکتر است.

یعنی: d < R

زاویه و دایره:

زاویه ی مرکزی:زاویه ای که رأس آن مرکز دایره باشد زاویه ی مرکزی نامیده می شود.

در شکل مقابل زاویه ی AOB یک زاویه مرکزی است و کمان AB کمان مقابل آن می باشد.

نکته: اندازه ی زاویه ی مرکزی با کمان مقابلش مساوی است.

زاویه ی محاطی: زاویه ی محاطی زاویه ای است که رأس آن روی دایره و اضلاع آن دو وتر از همان دایره باشند .

در شکل مقابل زاویه ی یک زاویه ی محاطی است و کمان BC ، کمان مقابل آن می باشد.

نکته :اندازه ی زاویه ی محاطی نصف کمان مقابل آن است.

زاویه ی ظلّی : هر زاویه ای که رأسش روی دایره و یک ضلع آن وتری از دایره و ضلع دیگرش بر دایره مماس باشد ، زاویه ی ظّلی نامیده می شود.

در شکل مقابل یک زاویه ی ظّلی و کمان AB کمان مقابل به زاویه ی ظّلی A می باشد.

نکته : اندازه ی زاویه ی ظّلی نصف کمان مقابل آن است.

مطالب المپیادی

مثلث و دایره :

دایره ی محاطی مثلث :

3 نیمساز زوایای داخلی مثلث یکدیگر را در یک نقطه مانند o قطع می کنند.می دانیم فاصله ی نقطه ی o از 3 ضلع مثلث به یک فاصله است ؛ یعنی اگر عمودی ها ی OK ،OH و OE را بر اضلاع مثلث فرود آوریم ،داریم : OE=OH=OK

پس اگر دایره ای به مرکز O و شعاع OH رسم کنیم ، این دایره در K و H و E بر سه ضلع مثلث مماس خواهد بود .

این دایره ، دایره ی محاطی مثلث نام دارد . مرکز دایره ی محاطی مثلث نقطه ی تلاقی نیمساز های زوایای داخلی آن است.

محاسبه ی شعاع دایره ی محاطی مثلث:

شعاع دایره ی محاطی مثلث را با حرف r نشان می دهیم .

دایره ی محیطی مثلث:

سه عمود منصف اضلاع یک مثلث بر یک نقطه مانند O می گذرند. می دانیم فاصله ی O از سه رأس مثلث به یک فاصله است، یعنی OA=OB=OC

اگر به مرکز O و شعاع مثلأ OA دایره ای رسم کنیم این دایره بر دو رأس دیگر مثلث نیز عبور خواهد کرد . به این دایره ، دایره ی محیطی مثلث می گویند .

مرکز دایره ی محیطی مثلث نقطه ی تقاطع عمود منصف های اضلاع آن است.

محاسبه ی شعاع دایره ی محیطی مثلث:

شعاع دایره ی محیطی مثلث را با حرف R نشان می دهند . در شکل زیر به دو مثلث توجه کنید ؛ این دو مثلث با هم متشابهند .

تناسب اضلاع متناظر دو مثلث را می نویسیم:

لذا در هر مثلث حاصل ضرب دو ضلع برابر است با : قطر دایره ی محیطی در ارتفاع وارد بر ضلع سوم یعنی :

از طرفی می دانیم مساحت مثلث برابر است با :

حالا با توجه به رابطه ی (1) و (2) می توان نوشت:

|+| نوشته شده توسط حجت خسروشاهی در یکشنبه 1388/02/13  |
 
 
بالا